Modern methods and preparations for regeneration liver and mechanisms of their action in liver resections
https://doi.org/10.17238/2072-3180-2024-4-212-220
Abstract
Introduction. Preoperative assessment of the risks of liver failure and the study of the process of reparative liver regeneration play a key role in choosing the scope of surgery. The study of the features of postresection liver regeneration will also allow us to assess the possibility and necessity of using regenerative medicine methods, including those based on the use of stem cells and gene therapy.
The purpose of the study. To analyze modern approaches to stimulation of postresection liver regeneration, to study the mechanisms of their effect.
Materials and methods of research. The data presented in PubMed, Elibrary and Cyberleninka are reviewed. Criteria for exclusion from the analysis: description of individual clinical cases; books and documents; comparison of treatment results of individual patients. The final analysis includes 52 works from the initially identified 105 sources.
Results. To date, there are several ways to influence liver regeneration: the ERAS technique, the study of the functional reserve of the liver, components of the hemostasis system, infusion therapy, correction of its own metabolites, regulation of signaling repair pathways. One of the most promising approaches is the use of multipotent stem cells.
Conclusion. The study and understanding of modern mechanisms for increasing the reparative potential of the liver will allow not only to perform extensive surgical interventions with fewer complications, but also to reduce the recovery time and disability of patients after such interventions.
About the Authors
A. Yu. LaptievaRussian Federation
Laptiyova Anastasia Yurievna – Candidate of Medical Sciences, Assistant of the Department of General and Outpatient Surgery,
394036, Studentskaya str., 10, Voronezh
A. A. Glukhov
Russian Federation
Glukhov Alexander Anatolyevich – Doctor of Medical Sciences, Professor, Head of the Department of General and Outpatient Surgery,
394036, Studentskaya str., 10, Voronezh
A. A. Andreev
Russian Federation
Andreev Alexander Alekseevich – Doctor of Medical Sciences, Professor of the Department of General and Outpatient Surgery,
394036, Studentskaya str., 10, Voronezh
V. A. Makhina
Russian Federation
Makhina Vera Alekseevna – student,
394036, Studentskaya str., 10, Voronezh
A. P. Ostroushko
Russian Federation
Anton Petrovich Ostroushko – Candidate of Medical Sciences, Associate Professor of the Department of General and Outpatient Medicine,
394036, Studentskaya str., 10, Voronezh
S. N. Boev
Russian Federation
Sergey Nikolaevich Boev – Candidate of Medical Sciences, Associate Professor of the Department of General and Outpatient Medicine,
394036, Studentskaya str., 10, Voronezh
E. V. Mikulich
Russian Federation
Mikulich Elena Viktorovna – Candidate of Medical Sciences, Associate Professor of the Department of General and Outpatient Surgery,
94036, Studentskaya str., 10, Voronezh
P. A. Konovalov
Russian Federation
Pavel Andreevich Konovalov – Postgraduate student of the Department of General and Outpatient Surgery,
394036, Studentskaya str., 10, Voronezh
References
1. Shabunin A.V., Parfenov I.P., Bedin V.V., Tavobilov M.M., Grekov D.N., Karpov A.A. Pirogov Russian Journal of Surgery, 2020, № 3, pp. 5-12. (In Russ.) https://doi.org/10.17116/hirurgia20200315
2. Rusu E.E., Voiculescu M., Zilisteanu D.S., Ismail G. Molecular adsorbents recirculating system in patients with severe liver failure. Experience of a single Romanian centre. J. Gastrointest. Liver Dis,. 2009, 18 (3), pp. 311-316.
3. Laptiyova A.Yu., Andreev A.A., Glukhov A.A., Shishkina V.V., Ostroushko A.P., Antakova L.N. Intraoperative methods of stimulating reparative liver regeneration in an experiment. Vestnik of Experimental and Clinical Surgery, 2023, № 16 (4), pp. 294-302. (In Russ.) https://doi.org/10.18499/2070-478X-2023-16-4-294-302
4. Murata S., Ohkohchi N., Matsuo R., Ikeda O., Myronovych A., Hoshi R. Platelets promote liver regeneration in early period after hepatectomy in mice. World J Surg, 2007, № 31 (04), pp. 808-816. https://doi.org/10.1007/s00268-006-0772-3
5. Glukhov A.A., Laptiyova A.Yu., Andreev A.A., Ostroushko A.P. The effect of growth factor expression on the liver regeneration process. Siberian Medical Review, 2022, № 1 (133), pp. 15-22. (In Russ.) https://doi.org/10.20333/25000136-2022-1-15-22
6. Forbes, Stuart J., and Philip N. Newsome. Liver regeneration - mechanisms and models to clinical application. Nature reviews Gastroenterology & hepatology, 2016, № 13 (8) pp. 473-485. https://doi.org/10.1038/nrgastro.2016.97
7. Ljungqvist O. ERAS-enhanced recovery after surgery: moving evidence-based perioperative care to practice. JPEN. Journal of parenteral and enteral nutrition, 2014, № 38(5), pp. 559-566. https://doi.org/10.1177/0148607114523451
8. Agarwal, Vandana, and Jigeeshu V Divatia. “Enhanced recovery after surgery in liver resection: current concepts and controversies.” Korean journal of anesthesiology, 2019, № 72 (2), pp. 119-129. https://doi.org/10.4097/kja.d.19.00010
9. Colle I., Verhelst X., Vanlander A., Geerts A., Van Vlierberghe H., Berrevoet F., Rogiers X., & Troisi R. I. Pathophysiology and management of post resection liver failure. Acta chirurgica Belgica, 2013, № 113(3), pp. 155-161. https://doi.org/10.1080/00015458.2013.11680904
10. Otao R., Beppu T., Isiko T., Mima K., Okabe H., Hayashi H., Masuda T., Chikamoto A., Takamori H., & Baba H. External biliary drainage and liver regeneration after major hepatectomy. The British journal of surgery, 2012, № 99(11), pp. 1569-1574. https://doi.org/10.1002/bjs.8906
11. Bogolyubova A.V. et al. The Farnesoid receptor (FXR) as a potential therapeutic target for non-alcoholic fatty liver disease and associated diseases. Diabetes mellitus, 2018, № 20 (6), pp. 449-453. (In Russ.) https://doi.org/10.14341/DM9374
12. Huang W., Ma K., Zhang J., Qatanani M., Cuvillier J., Liu J., Dong B., Huang X., & Moore D. D. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science (New York, N.Y.), 2006, № 312(5771), pp. 233-236. https://doi.org/10.1126/science.1121435
13. Grebenkin E.N., Borisova O.A., Fomin D.K., Akhaladze G.G. On the issue of liver functional reserve. Annals of Surgical Hepatology, 2017, № 22(1). pp. 25-31. (In Russ.) https://doi.org/10.16931/1995-5464.2017125-31
14. Akita H., Sasaki Y., Yamada T., Gotoh K., Ohigashi H., Eguchi H., Yano M. Ishikawa O., Imaoka S. Real-time intraoperative assessment of residual liver functional reserve using pulse dye densitometry. World J. Surg, 2008, № 32 (12), pp. 2668-2674. https://doi.org/10.1007/s00268-008-9752-0
15. Myronovych A., Murata S., Chiba M. et al. Role of platelets on liver regeneration after 90% hepatectomy in mice. J Hepatol, 2008, № 49 (03), pp. 363-372. https://doi.org/10.1016/j.jhep.2008.04.019
16. Jin S., Fu Q., Wuyun G., & Wuyun T. Management of post-hepatectomy complications. World journal of gastroenterology, 2013, № 19 (44), pp. 7983-7991. https://doi.org/10.3748/wjg.v19.i44.7983
17. Watanabe M., Houten S.M., Mataki C., Christoffolete M.A., Kim B.W., Sato H., Messaddeq N., Harney J. W., Ezaki O., Kodama T., Schoonjans K., Bianco A.C., & Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, № 439 (7075), pp. 484-489. https://doi.org/10.1038/nature04330
18. Lelou E., Corlu A., Nesseler N., Rauch C., Mallédant Y., Seguin P., & Aninat C. The Role of Catecholamines in Pathophysiological Liver Processes. Cells, 2022, 11(6), p. 1021. https://doi.org/10.3390/cells11061021
19. Hu Y., Hu X., Luo J., Huang J., Sun Y., Li H., Qiao Y., Wu H., Li J., Zhou L., & Zheng S. Liver organoid culture methods. Cell & bioscience, 2023, № 13 (1), pр. 197. https://doi.org/10.1186/s13578-023-01136-x
20. Michalopoulos G. K. Liver regeneration. Journal of cellular physiology, 2007, № 213 (2), pp. 286-300. https://doi.org/10.1002/jcp.21172
21. Abu Rmilah A., Zhou W., Nelson E., Lin L., Amiot B., & Nyberg S. L. Understanding the marvels behind liver regeneration. Wiley interdisciplinary reviews. Developmental biology, 2019, № 8 (3), рр. e340. https://doi.org/10.1002/wdev.340
22. Riehle K. J., Dan Y. Y., Campbell J. S., & Fausto N. New concepts in liver regeneration. Journal of gastroenterology and hepatology, 2011, № 26 (1), pp. 203-212. https://doi.org/10.1111/j.1440-1746.2010.06539.x
23. Abu Rmilah A. A., Zhou W., & Nyberg S. L. Hormonal Contribution to Liver Regeneration. Mayo Clinic proceedings. Innovations, quality & outcomes, 2020, № 4 (3), pp. 315-338. https://doi.org/10.1016/j.mayocpiqo.2020.02.001
24. Khan M. G. M., Ghosh A., Variya B., Santharam M. A., Kandhi R., Ramanathan S., & Ilangumara, S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine, 2019, № 121, рр. 154733. https://doi.org/10.1016/j.cyto.2019.154733
25. Paranjpe S., Bowen W. C., Mars W. M., Orr A., Haynes M. M., DeFrances M. C., Liu S., Tseng G. C., Tsagianni A., & Michalopoulos G. K. Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology (Baltimore, Md.), 2016, № 64 (5), pp. 1711- 1724. https://doi.org/10.1002/hep.28721
26. Chen F., Schönberger K., & Tchorz J. S. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP reports: innovation in hepatology, 2023, № 5 (8), рр. 100779. https://doi.org/10.1016/j.jhepr.2023.100779
27. Stravitz R. T., & Lee W. M. Acute liver failure. Lancet (London, England), 2019, № 394 (10201), pp. 869-881. https://doi.org/10.1016/S0140-6736(19)31894-X
28. Sang J. F., Shi X. L., Han B., Huang T., Huang X., Ren H. Z., & Ding Y. T. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis. Hepatobiliary & pancreatic diseases international: HBPD INT, 2016, № 15 (6), pp. 602-611. https://doi.org/10.1016/s1499-3872(16)60141-8
29. Cao, H., Yang, J., Yu, J., Pan, Q., Li, J., Zhou, P., Li, Y., Pan, X., Li, J., Wang, Y., & Li, L. Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure. BMC medicine, 2012, № 10, pр. 56. https://doi.org/10.1186/1741-7015-10-56
30. Teshima T., Matsumoto H., Michishita M., Matsuoka A., Shiba M., Nagashima T., & Koyama H. Allogenic Adipose Tissue-Derived Mesenchymal Stem Cells Ameliorate Acute Hepatic Injury in Dogs. Stem cells international, 2017, рр. 3892514. https://doi.org/10.1155/2017/3892514
Review
For citations:
Laptieva A.Yu., Glukhov A.A., Andreev A.A., Makhina V.A., Ostroushko A.P., Boev S.N., Mikulich E.V., Konovalov P.A. Modern methods and preparations for regeneration liver and mechanisms of their action in liver resections. Moscow Surgical Journal. 2024;(4):212-220. (In Russ.) https://doi.org/10.17238/2072-3180-2024-4-212-220