Preview

Moscow Surgical Journal

Advanced search

Argon-induced preconditioning and postconditioning in patients with myocardial ischemia

https://doi.org/10.17238/2072-3180-2024-2-101-115

Abstract

Introduction. The use of noble gases as organ-protective agents is a new method in various fields of medicine. This technique can be used effectively for myocardial protection and be widely introduced into clinical practice, including cardiac surgery. Mixtures of oxygen and argon in different concentrations are inhaled through the mask. Among other gases, argon stands out for its low cost, affordability, no narcotic effects, and no effects on hemodynamics.

The objective was to study effects of inhalation of argon oxygen mixtures for pre- (PreC) and post-conditioning (PostC) on cellular objects and laboratory animals, as well as in clinical studies.

Materials and methods. A review of literary sources among Russian- and English-language publications was conducted. Pubmed, Web of Science, RSCI databases were used.

Results. The protective effects of argon on cardiomyocytes and myocardium are confirmed. Argon does not affect brain and kidney cells. The cellular model shows that apoptosis rates are decreasing, and proliferation rates increase but mentions cases of necrosis. There is no information about the perioperative use of argon.

Conclusion. Based on our review, we found the problem to be relevant and further research on the effects of oxygen-argon mixtures is needed, including their potential use in clinical practice with cardioprotective purposes.

About the Authors

E. G. Agafonov
Moscow Regional Clinical Research Institute named after M.F. Vladimirsky (MONIKI)
Russian Federation

Agafonov Evgenii Gennad’evich – Researcher of the Department, doctor of Cardiac Surgery

129110, Schepkina str., 61/2, Moscow



L. S. Zolotareva
Pirogov Russian National Research Medical University
Russian Federation

Zolotareva Lyubov Svyatoslavovna – PhD, senior researcher at the Department of Pediatric Reconstructive and Plastic Surgery, Research Institute of Clinical Surgery

 123001, st. Sadovaya-Kudrinskaya, 15с3, Moscow

 



D. I. Zybin
Moscow Regional Clinical Research Institute named after M.F. Vladimirsky (MONIKI)
Russian Federation

Zybin Dmitrii Igorevich – PhD, Department head of the Cardiac Surgery

129110, Schepkina str., 61/2, Moscow



М. А. Popov
Moscow Regional Clinical Research Institute named after M.F. Vladimirsky (MONIKI)
Russian Federation

Popov Mikhail Aleksandrovich – PhD, Senior Researcher, doctor at the Department of Cardiac Surgery

129110, Schepkina str., 61/2, Moscow



L. Zh. Mameshova
Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University
Russian Federation

Mameshova Lina Zhanatovna – student 

119991, Lomonosovsky avenue, 27, Moscow



D. А. Rybakov
Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University
Russian Federation

Rybakov Dmitry Aleksandrovich – student

119991, Lomonosovsky avenue, 27, Moscow



V. V. Dontsov
Moscow Regional Clinical Research Institute named after M.F. Vladimirsky (MONIKI)
Russian Federation

Dontsov Vladislav Viktorovich – Researcher, doctor of the Department of Cardiac Surgery

129110, Schepkina str., 61/2, Moscow



V. Р. Pronina
Moscow Regional Clinical Research Institute named after M.F. Vladimirsky (MONIKI)
Russian Federation

Pronina Victoria Petrovna – Candidate of Medical Sciences. Senior Researcher at the Department of Cardiac Surgery

129110, Schepkina str., 61/2, Moscow



R. А. Maslennikov
Moscow Regional Clinical Research Institute named after M.F. Vladimirsky (MONIKI)
Russian Federation

Maslennikov Ruslan Andreevich – Resident of the Department of
Cardiac Surgery

129110, Schepkina str., 61/2, Moscow



L. Yu. Marchenko
State Scientific Center of the Russian Federation Institute of Biomedical Issues of the Russian Academy of Sciences
Russian Federation

Marchenko Liliya Yurievna – Researcher

123007, 76A Khoroshevskoe shosse str., Moscow



E. E. Sigaleva
State Scientific Center of the Russian Federation Institute of Biomedical Issues of the Russian Academy of Sciences
Russian Federation

Sigaleva Elena Eduardovna – Doctor of Medical Sciences, Professor 

123007, 76A Khoroshevskoe shosse str., Moscow



D. V. Shumakov
Moscow Regional Clinical Research Institute named after M.F. Vladimirsky (MONIKI)
Russian Federation

Shumakov Dmitrii Valer’evich – MD, PhD, professor, corresponding member RAS, Head of the Department of Cardiac and Vascular Surgery

129110, Schepkina str., 61/2, Moscow

 



References

1. Bethesda M.D. Nhlbi Morbidity and Mortality Chartbook; National Heart, Lung and Blood Institute: Bethesda, MD, USA, 2002

2. Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Blaha M.J. et al. Heart disease and stroke statistics—2014 update: A report from the american heart association. Circulation, 2014. № 129, pp. e28–e292. https://doi.org/10.1161/01.cir.0000441139.02102.80

3. De Hert S.G. Volatile anesthetics and cardiac function. Semin. Cardiothorac. Vasc. Anesth, 2006, №10, pp. 33-42. https://doi.org/10.1177/108925320601000107

4. De Hert SG. Cardioprotection by volatile anesthetics: what about noncardiac surgery? J. Cardiothorac. Vasc. Anesth, 2011, № 25, pp. 899–901. https://doi.org/10.1053/j.jvca.2011.08.004

5. Soldatov P.E., D’iachenko A.I., Pavlov B.N., Fedotov A.P., Chuguev A.P. Survival of laboratory animals in argon-containing hypoxic gaseous environments. Aviakosm. Ekolog. Med., 1998, № 32, pp. 33–37. (In Russ.)

6. Kiss A., Shu H., Hamza O., Santer D., Tretter E.V., Yao S. et al. Argon preconditioning enhances postischaemic cardiac functional recovery following cardioplegic arrest and global cold ischaemia. Eur. J. Cardiothorac. Surg., 2018, № 54, pp. 539–546. https://doi.org/10.1093/ejcts/ezy104

7. Pagel P.S., Krolikowski J.G., Shim Y.H., Venkatapuram S., Kersten J.R., Weihrauch D. et al. Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth. Analg, 2007, № 105, pp. 562–569. https://doi.org/10.1213/01.ane.0000278083.31991.36

8. Lemoine S., Blanchart K., Souplis M., Lemaitre A., Legallois D., Coulbault L. et al. Argon exposure induces postconditioning in myocardial ischemia–reperfusion. J. Cardiovasc. Pharmacol. Ther., 2017, № 22, pp. 564–573. https://doi.org/10.1177/1074248417702891

9. Fahlenkamp A.V., Rossaint R., Haase H., Al Kassam H., Ryang Y.M., Beyer C., Coburn M. The noble gas argon modifies extracellular signalregulated kinase 1/2 signaling in neurons and glial cells. Eur. J. Pharmacol., 2012, № 674, pp. 104–111. https://doi.org/10.1016/j.ejphar.2011.10.045

10. Jawad N., Rizvi M., Gu J., Adeyi O., Tao G., Maze M., Ma D. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci. Lett., 2009, № 460, pp. 232–236. https://doi.org/10.1016/j.neulet.2009.05.069

11. Loetscher P.D., Rossaint J., Rossaint R., Weis J., Fries M., Fahlenkamp A. et al. Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit. Care., 2009, № 13, pр. R206. https:// doi.org/10.1186/cc8214

12. Brucken A., Cizen A., Fera C., Meinhardt A., Weis J., Nolte K. et al. Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth., 2013, № 110, pp. i106–i112. https://doi.org/10.1093/bja/aes509

13. Brucken A., Kurnaz P., Bleilevens C., Derwall M., Weis J., Nolte K. et al. Dose dependent neuroprotection of the noble gas argon after cardiac arrest in rats is not mediated by K(ATP)-channel opening. Resuscitation, 2014, № 85, pp. 826–832. https://doi.org/10.1016/j.resuscitation.2014.02.014

14. De Deken J., Rex S., Monbaliu D., Pirenne J., Jochmans I. The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses. Crit. Care. Med., 2016, № 44, pp. e886–96. https://doi.org/10.1097/CCM.0000000000001717

15. Hafner C., Qi H., Soto-Gonzalez L., Doerr K., Ullrich R., Tretter E.V. et al. Argon Preconditioning Protects Airway Epithelial Cells against Hydrogen Peroxide-Induced Oxidative Stress. Eur. Surg. Res., 2016, № 57, pp. 252–262. https://doi.org/10.1159/000448682

16. COESA. U.S. Standard Atmosphere 1976. Washington DC: U.S. Government Printing Office; 1976; 1–241. Report No.: NOAA-S/T76-1562.

17. Boeva E.A., Grebenchikov O.A. Organoprotective Properties of Argon (Review). General reanimatology, 2022, №18, pp. 44-59. https://doi.org/10.15360/1813-9779-2022-5-44-59 (in Russ.)

18. Ma S., Chu D., Li L., Creed J.A., Ryang Y.M., Sheng H. et al. Argon Inhalation for 24 Hours After Onset of Permanent Focal Cerebral Ischemia in Rats Provides Neuroprotection and Improves Neurologic Outcome. Crit. Care Med., 2019, № 47, pp. e693–e699. https://doi.org/10.1097/CCM.0000000000003809

19. Nespoli F., Redaelli S., Ruggeri L., Fumagalli F., Olivari D., Ristagno G. A complete review of preclinical and clinical uses of the noble gas argon: Evidence of safety and protection. Ann. Card. Anaesth., 2019, № 22, pp. 122–135. https://doi.org/10.4103/aca.ACA_111_18

20. Schneider F.I., Krieg S.M., Lindauer U., Stoffel M., Ryang Y.M. Neuroprotective Effects of the Inert Gas Argon on Experimental Traumatic Brain Injury In Vivo with the Controlled Cortical Impact Model in Mice. Biology (Basel)., 2022, № 11, рp. 158. https://doi.org/10.3390/biology11020158

21. Ulbrich F., Kaufmann K.B., Meske A. et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS One., 2016, № 11, pр. e0165182. https://doi.org/10.1371/journal.pone.0165182

22. Vdovin A.V., Nozdracheva L.V., Pavlov B.N. Parameters of energy metabolism of the rat brain during inhalation of hypoxic mixtures containing nitrogen and argon. Biull. Eksp. Biol. Med., 1998, № 125, pp. 618–619. (In Russ.)

23. Petrov V.A., Ivanov A.O., Kindzerskij A.V., Majorov I.V. Method of emergency relief of acute ischemic attacks with cerebral or coronary circulation failure. Patent № RU 2748126 C1. Date of registration: 01.06.2020. Date of publication: 19.05.2021. (In Russ.)

24. Petrov V.A., Ivanov A.O., Kochubejnik N.V., Shatov D.V. Method of auxiliary therapy in treatment and rehabilitation of patients with violations of the oxygen balance of the body. Patent № RU 2661771 C2. Date of registration: 13.12.2016. Date of publication: 19.07.2018. (In Russ.)

25. Spaggiari S., Kepp O., Rello-Varona S., Chaba K., Adjemian S., Pype J. et al. Antiapoptotic activity of argon and xenon. Cell Cycle., 2013, № 12, pp. 2636–2642. https://doi.org/10.4161/cc.25650

26. Yarin Y.M., Amarjargal N., Fuchs J., Haupt H., Mazurek B., Morozova S.V., Gross J. Argon protects hypoxia-, cisplatin- and gentamycinexposed hair cells in the newborn rat’s organ of Corti. Hear. Res., 2005, № 201, pp. 1–-9. https://doi.org/10.1016/j.heares.2004.09.015

27. Wu L., Zhao H., Wang T., Pac-Soo C., Ma D. Cellular signaling pathways and molecular mechanisms involving inhalational anestheticsinduced organoprotection. J. Anaesth., 2014, № 28, pp. 740–758. https://doi.org/10.1007/s00540-014-1805-y

28. David H.N., Haelewyn B., Degoulet M., Colomb D.G. Jr., Risso J.J., Abraini J.H. Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PLoS One, 2012, № 7, pр. e30934. https://doi.org/10.1371/journal.pone.0030934

29. Fahlenkamp A.V., Coburn M., de Prada A., Gereitzig N., Beyer C., Haase H. et al. Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med. Gas. Res., 2014, № 4, рp. 11. https://doi.org/10.1186/2045-9912-4-11

30. Irani Y., Pype J.L., Martin A.R., Chong C.F., Daniel L., Gaudart J. et al. Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra, 2011, № 1, pp. 272–282. https://doi.org/10.1159/000335197

31. Faure A., Bruzzese L., Steinberg J.G., Jammes Y., Torrents J., Berdah S.V. et al. Effectiveness of pure argon for renal transplant preservation in a preclinical pig model of heterotopic autotransplantation. J. Transl. Med., 2016, № 14, pр. 40. https://doi.org/10.1186/s12967-016-0795-y

32. Mayer B., Soppert J., Kraemer S., Schemmel S., Beckers C., Bleilevens C. et al. Argon Induces Protective Effects in Cardiomyocytes during the Second Window of Preconditioning. Int. J. Mol. Sci., 2016, № 17, рp. 1159. https://doi.org/10.3390/ijms17071159

33. Qi H., Soto-Gonzalez L., Krychtiuk K.A., Ruhittel S., Kaun C., Speidl W.S. et al. Pretreatment with argon protects human cardiac myocytelike progenitor cells from oxygen glucose deprivation-induced cell death by activation of AKT and differential regulation of mapkinases. Shock, 2018, № 49, pp. 556–563. https://doi.org/10.1097/SHK.0000000000000998

34. Qi H., Zhang J., Shang Y., Yuan S., Meng C. Argon inhibits reactive oxygen species oxidative stress via the miR-21-mediated PDCD4/PTEN pathway to prevent myocardial ischemia/reperfusion injury. Bioengineered, 2021, № 12, pp. 5529–5539. https://doi.org/10.1080/21655979.2021.19656 96

35. Savary G., Lidouren, F., Rambaud, J., Kohlhauer, M., Hauet, T., Bruneval, P. et al. Argon attenuates multiorgan failure following experimental aortic cross-clamping. Br. J. Clin. Pharmacol., 2018, № 84, pp. 1170–1179. https://doi.org/10.1111/bcp.13535

36. Rizvi M., Jawad N., Li Y., Vizcaychipi M.P., Maze M., Ma D. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. Exp. Biol. Med. (Maywood), 2010, № 235, pp. 886–891. https://doi.org/10.1258/ebm.2010.009366

37. Grüne F., Kazmaier S., Hoeks S.E., Stolker R.J., Coburn M., Weyland A. Argon does not affect cerebral circulation or metabolism in male humans. PLoS One, 2017, № 12, pр. e0171962. https://doi.org/10.1371/journal.pone.0171962

38. Markin A.A., Juravlyova O.A., Morukov B.V., Kuzichkin D.S., Zabolotskaya I.V., Vostrikova L.V. Metabolic reactions of the body when breathing hypoxic argon-oxygen and nitrogen-oxygen gas mixtures. Human Physiology, 2017, № 43, pp. 466–473. https://doi.org/10.7868/S0131164617040105 (In Russ.).

39. P.G. Shakhnovich, A.O. Ivanov, V.F. Belyaev, D.V. Cherkashin, A.S. Svistov, V.P. Andrianov, E.S. Zagarov. Possibility of correction of microcirculation indicators in hypoxia. Bulletin of the Russian Military Medical Academy, 2015, №3, pp. 28-32 (In Russ.).

40. Lysenko E.A., Shmarov V.A., Rykova M.P., Antropova E.N., Kutko O.V., Shulgina S.M. et al. The influence of respiratory hypoxic gas mixtures (oxygen-nitrogen and oxygen-nitrogen-argon) in a pressure chamber on the state of the human cellular immunity. Cell immunology, 2022, № 43, pp. 643– 653. https://doi.org/10.33029/0206-4952-2021-42-6-643-653 (In Russ.).


Review

For citations:


Agafonov E.G., Zolotareva L.S., Zybin D.I., Popov М.А., Mameshova L.Zh., Rybakov D.А., Dontsov V.V., Pronina V.Р., Maslennikov R.А., Marchenko L.Yu., Sigaleva E.E., Shumakov D.V. Argon-induced preconditioning and postconditioning in patients with myocardial ischemia. Moscow Surgical Journal. 2024;(2):101-115. (In Russ.) https://doi.org/10.17238/2072-3180-2024-2-101-115

Views: 545


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-3180 (Print)