Application of Mixed Reality in oncourological practice (literature review)
https://doi.org/10.17238/2072-3180-2024-4-263-270
Abstract
In the last 5 years, the number of scientific publications about mixed reality (MR) in surgery is significantly increased.
One of the component of MR is virtual reality (VR) technology, which has been used in medicine for training purposes since the end of the 20th century. MR replaced virtual reality (VR) and expanded the possibilities of using technology for surgical interventions, including the possibility of using it directly during surgery. In oncourological practice, MR is actively using for kidney resections, retroperitoneal and salvage lymphadenectomies.
The main way of using MR technologies in oncourology are partial nephrectomy, retroperitoneal and salvage lymphadenectomy.
We introduce literature review of using possibilities and results.
About the Authors
A. A. IzmailovRussian Federation
Izmailov Albert Adelevich – oncologist of oncourology deparment,
PhD researcher, 27 Istra settlement, Stepanovskoye settlement, Krasnogorsky district,
Moscow region
I. V. Semenyakin
Russian Federation
Semeniakin Igor Vladimirovich – Doctor of Medical Sciences, Medical Director,
123056, Moscow
N. K. Gadzhiev
Russian Federation
Gadzhiev Nariman Kazihanovich – Doctor of Medical Sciences, deputy Director of the Medical Part (Urology),
embankment, 190103, St.Petersburg, 154, Fontanka river
V. S. Fomin
Russian Federation
Fomin Vladimir Sergeevich – MD, PhD, Associate Professor, surgeon,
st. Lobnenskaya, 10, 127644, Moscow
References
1. Azuma R.T. A Survey of Augmented Reality. Presence: Teleoperators & Virtual Environments, 1997, Aug; № 6(4), рр. 355–385. https://doi.org/10.1162/pres.1997.6.4.355
2. Slater M., Sanchez-Vives M.V. Enhancing Our Lives with Immersive Virtual Reality. Front. Robot. AI., 2016, Dec 19; № 3, рр. 74. https://doi.org/10.3389/frobt.2016.00074
3. Asadi Z., Asadi M., Kazemipour N., Léger É., Kersten-Oertel M. A decade of progress: bringing mixed reality image-guided surgery systems in the operating room. Comput Assist Surg (Abingdon), 2024, Dec; № 29(1), рр. 2355897. https://doi.org/10.1080/24699322.2024.2355897
4. Satava R.M. Emerging medical applications of virtual reality: a surgeon’s perspective. Artif Intell Med., 1994, Aug; № 6(4), рр. 281–288. https://doi.org/10.1016/0933-3657(94)90033-7. PMID: 7812423
5. Figert P.L., Park A.E., Witzke D.B., Schwartz R.W. Transfer of training in acquiring laparoscopic skills. J Am Coll Surg., 2001, Nov; № 193(5), рр. 533–537. https://doi.org/10.1016/s1072-7515(01)01069-9
6. Gallagher A.G., Satava R.M. Virtual reality as a metric for the assessment of laparoscopic psychomotor skills. Learning curves and reliability measures. Surg Endosc., 2002, № 16(12), рр. 1746e52.
7. Ahlberg G., Enochsson L., Gallagher A.G., Hedman L., Hogman C., McClusky D.A.3rd, Ramel S., Smith C.D., Arvidsson D. Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg., 2007, Jun; № 193(6), рр. 797–804. https://doi.org/10.1016/j.amjsurg.2006.06.050
8. Mazzone E., Puliatti S., Amato M., Bunting B., Rocco B., Montorsi F., Mottrie A., Gallagher A.G. A Systematic Review and Meta-analysis on the Impact of Proficiency-based Progression Simulation Training on Performance Outcomes. Ann Surg., 2021, Aug 1; № 274(2), рр. 281–289. https://doi.org/10.1097/SLA.0000000000004650
9. Andreatta P.B., Woodrum D.T., Birkmeyer J.D., Yellamanchilli R.K., Doherty G.M., Gauger P.G., Minter R.M. Laparoscopic skills are improved with LapMentor training: results of a randomized, double-blinded study. Ann Surg., 2006, Jun; № 243(6), рр. 854–860. https://doi.org/10.1097/01.sla.0000219641.79092.e5
10. Sherman V., Feldman L.S., Stanbridge D., Kazmi R., Fried G.M. Assessing the learning curve for the acquisition of laparoscopic skills on a virtual reality simulator. Surg Endosc., 2005, May; № 19(5), рр. 678–682. https://doi.org/10.1007/s00464-004-8943-5
11. Sparn M.B., Teixeira H., Chatziisaak D., Schmied B., Hahnloser D., Bischofberger S. Virtual reality simulation training in laparoscopic surgery - does it really matter, what simulator to use? Results of a crosssectional study. BMC Med Educ., 2024, May 28; № 24(1), рр. 589. https://doi.org/10.1186/s12909-024-05574-0
12. Ed. Kaprina A.D., Starinsky V.V., Shakhzadova A.O. Malignant neoplasms in Russia in 2022 (morbidity and mortality) M. : P.A. Herzen Moscow State Medical Research Institute − branch of the Federal State Budgetary Institution «NMIC of Radiology» of the Ministry of Health of Russia, 2023, 275 p.
13. Sung H., Ferlay J., Siegel R.L. et al. Global cancer statistics 2020:gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin., 2021, № 71(3), рр. 209–249.
14. Van Poppel H., Da Pozzo L., Albrecht W., Matveev V., Bono A., Borkowski A., Marechal J.M., Klotz L., Skinner E., Keane T., Claessens I., Sylvester R. European Organization for Research and Treatment of Cancer (EORTC); National Cancer Institute of Canada Clinical Trials Group (NCIC CTG); Southwest Oncology Group (SWOG); Eastern Cooperative Oncology Group (ECOG). A prospective randomized EORTC intergroup phase 3 study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol., 2007, Jun; № 51(6), рр. 1606–1615. https://doi.org/10.1016/j.eururo.2006.11.013
15. Janssen M.W.W., Linxweiler J., Terwey S., Rugge S., Ohlmann C.H., Becker F., Thomas C., Neisius A., Thüroff J.W., Siemer S., Stöckle M., Roos F.C. Survival outcomes in patients with large (≥7cm) clear cell renal cell carcinomas treated with nephron-sparing surgery versus radical nephrectomy: Results of a multicenter cohort with long-term follow-up. PLoS One, 2018, May 3; № 13(5), рр. e0196427. https://doi.org/10.1371/journal.pone.0196427
16. Clinical recommendations of the Ministry of Health of the Russian Federation. Cancer of the parenchyma of the kidney. Available at: https://old.oncology-association.ru/clinicalguidelines-update. Accessed: 15.12.2022 (in Russian).
17. Kaprin A.D., Kostin A.A., Stepanov S.O., Vorobyov N.V., Bespalov P.D., Dimitrov V.O. Analysis of the possibilities of using intraoperative ultrasound in the surgical treatment of kidney tumors. Research’n Practical Medicine Journal, 2019, № 6(1), рр. 50–59. https://doi.org/10.17709/2409-2231-2019-6-1-5 (in Russian)
18. Chopra S., Bove A.M., Gill I.S. Robotic Partial Nephrectomy: Advanced Techniques and Use of Intraoperative Imaging. In: Su, LM. (eds) Atlas of Robotic Urologic Surgery. Springer, Cham., 2017. https://doi.org/10.1007/978-3-319-45060-5_7
19. Wunderlich H., Reichelt O., Schubert R., Zermann D.H., Schubert J. Preoperative simulation of partial nephrectomy with three-dimensional computed tomography. BJU Int., 2000, Nov; № 86(7), рр. 777–781. https://doi.org/10.1046/j.1464-410x.2000.00898.x
20. Silberstein J.L., Maddox M.M., Dorsey P., Feibus A., Thomas R., Lee B.R. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: a pilot study. Urology, 2014, Aug; № 84(2), рр. 268–272. https://doi.org/10.1016/j.urology.2014.03.042
21. Komai Y., Sugimoto M., Gotohda N., Matsubara N., Kobayashi T., Sakai Y., Shiga Y., Saito N. Patient-specific 3-dimensional Printed Kidney Designed for «4D» Surgical Navigation: A Novel Aid to Facilitate Minimally Invasive Off-clamp Partial Nephrectomy in Complex Tumor Cases. Urology, 2016, May; № 91, рр. 226–233. https://doi.org/10.1016/j.urology.2015.11.060
22. Porpiglia F., Checcucci E., Amparore D., Piramide F., Volpi G., Granato S., Verri P., Manfredi M., Bellin A., Piazzolla P., Autorino R., Morra I., Fiori C., Mottrie A. Three-dimensional Augmented Reality Robot-assisted Partial Nephrectomy in Case of Complex Tumours (PADUA ≥10): A New Intraoperative Tool Overcoming the Ultrasound Guidance. Eur Urol., 2020, Aug; № 78(2), рр. 229–238. https://doi.org/10.1016/j.eururo.2019.11.024
23. Semenyakin I.V., Gadzhiev N.K., Gabdullin A.F., Poghosyan R.R., Jalilov I.B., Kuzmina I.N., Morshnev A.V. The use of mixed reality in laparoscopic kidney resection. Moscow Surgical Journal, 2021, № 4, рр. 47–57. https://doi.org/10.17238/2072-3180-2021-4-47-57 (in Russian)
24. Gadzhiev N, Semeniakin I, Morshnev A., Alcaraz A., Gauhar V., Okhunov Z. Role and Utility of Mixed Reality Technology in Laparoscopic Partial Nephrectomy: Outcomes of a Prospective RCT Using an Indigenously Developed Software. Adv Urol., 2022, May 16; № 2022, рр. 8992051. https://doi.org/10.1155/2022/8992051
25. Gandaglia G., Ploussard G., Valerio M., Mattei A., Fiori C., Fossati N., Stabile A., Beauval J.B., Malavaud B., Roumiguié M., Robesti D., Dell’Oglio P., Moschini M., Zamboni S., Rakauskas A., De Cobelli F., Porpiglia F., Montorsi F., Briganti A. A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies. European Urology, Volume 75, Issue 3, 2019, рр. 506–514. https://doi.org/10.1016/j.eururo.2018.10.012
26. Keegan K.A., Cookson M.S. Complications of pelvic lymph node dissection for prostate cancer. Curr Urol Rep., 2011, Jun; № 12(3), рр. 203– 208. https://doi.org/10.1007/s11934-011-0179-z
27. Morris M.J., Rowe S.P., Gorin M.A., Saperstein L., Pouliot F., Josephson D., Wong J.Y.C., Pantel A.R., Cho S.Y., Gage K.L., Piert M., Iagaru A., Pollard J.H., Wong V., Jensen J., Lin T., Stambler N., Carroll P.R., Siegel B.A. CONDOR Study Group. Diagnostic Performance of 18F-DCFPyLPET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin Cancer Res., 2021, Jul 1; № 27(13), рр. 3674–3682. https://doi.org/10.1158/1078-0432.CCR20-4573
28. Fendler W.P., Calais J., Eiber M., Flavell R.R., Mishoe A., Feng F.Y., Nguyen H.G., Reiter R.E., Rettig M.B., Okamoto S., Emmett L., Zacho H.D., Ilhan H., Wetter A., Rischpler C., Schoder H., Burger I.A., Gartmann J., Smith R., Small E.J., Slavik R., Carroll P.R., Herrmann K., Czernin J., Hope T.A. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol., 2019, Jun 1; № 5(6), рр. 856–863. https://doi.org/10.1001/jamaoncol.2019.0096
29. Ploussard G., Gandaglia G., Borgmann H., de Visschere P., Heidegger I., Kretschmer A., Mathieu R., Surcel C., Tilki D., Tsaur I., Valerio M., van den Bergh R., Ost P., Briganti A. EAU-YAU Prostate Cancer Working Group. Salvage Lymph Node Dissection for Nodal Recurrent Prostate Cancer: A Systematic Review. Eur Urol., 2019, Oct; № 76(4), рр. 493–504. https://doi.org/10.1016/j.eururo.2018.10.041
30. Fossati N., Suardi N., Gandaglia G., Bravi C.A., Soligo M., Karnes R.J., Shariat S., Battaglia A., Everaerts W., Joniau S., Van Poppel H., Rajarubendra N., Gill I.S., Larcher A., Mottrie A., Schmautz M., Heidenreich A., Kalz A., Osmonov D., Juenemann K.P., Herlemann A., Gratzke C., Stief C., Montorsi F., Briganti A. Identifying the Optimal Candidate for Salvage Lymph Node Dissection for Nodal Recurrence of Prostate Cancer: Results from a Large, Multi-institutional Analysis. Eur Urol., 2019, Jan; № 75(1), рр. 176–183. https://doi.org/10.1016/j.eururo.2018.09.009
31. Shirokorad V.I., Izmailov A.A., Lupashko D.G. Life-saving lymphadenectomy in oligometastatic lymphogenic progression of prostate cancer: literature analysis and own experience. Oncourology, 2024, № 20(1), рр. 52–59. https://doi.org/10.17650/1726-9776-2024-20-1-52-59 (in Russian)
32. Krishnan G., Berg N.Svd., Nishio N., Juniper G., Pei J., Zhou Q., Lu G., Lee Y.J., Ramos K., Iagaru A.H., Baik F.M., Colevas A.D., Martin B.A., Rosenthal E.L. Metastatic and sentinel lymph node mapping using intravenously delivered Panitumumab-IRDye800CW. Theranostics, 2021, № 11(15), рр. 7188–7198. https://doi.org/10.7150/thno.55389
33. Nishio N., van den Berg N.S., van Keulen S. et al. Optical molecular imaging can differentiate metastatic from benign lymph nodes in head and neck cancer. Nat Commun, 2019, № 10(1), рр. 5044.
34. Vonk J., de Wit J.G., Voskuil F.J. et al. Epidermal Growth Factor Receptor-Targeted Fluorescence Molecular Imaging for Postoperative Lymph Node Assessment in Patients with Oral Cancer. J Nucl Med., 2022, № 63(5), рр. 672-678.
Review
For citations:
Izmailov A.A., Semenyakin I.V., Gadzhiev N.K., Fomin V.S. Application of Mixed Reality in oncourological practice (literature review). Moscow Surgical Journal. 2024;(4):263-270. (In Russ.) https://doi.org/10.17238/2072-3180-2024-4-263-270