Argon-induced preconditioning and postconditioning in patients with myocardial ischemia
https://doi.org/10.17238/2072-3180-2024-2-101-115
Abstract
Introduction. The use of noble gases as organ-protective agents is a new method in various fields of medicine. This technique can be used effectively for myocardial protection and be widely introduced into clinical practice, including cardiac surgery. Mixtures of oxygen and argon in different concentrations are inhaled through the mask. Among other gases, argon stands out for its low cost, affordability, no narcotic effects, and no effects on hemodynamics.
The objective was to study effects of inhalation of argon oxygen mixtures for pre- (PreC) and post-conditioning (PostC) on cellular objects and laboratory animals, as well as in clinical studies.
Materials and methods. A review of literary sources among Russian- and English-language publications was conducted. Pubmed, Web of Science, RSCI databases were used.
Results. The protective effects of argon on cardiomyocytes and myocardium are confirmed. Argon does not affect brain and kidney cells. The cellular model shows that apoptosis rates are decreasing, and proliferation rates increase but mentions cases of necrosis. There is no information about the perioperative use of argon.
Conclusion. Based on our review, we found the problem to be relevant and further research on the effects of oxygen-argon mixtures is needed, including their potential use in clinical practice with cardioprotective purposes.
About the Authors
E. G. AgafonovRussian Federation
Agafonov Evgenii Gennad’evich – Researcher of the Department, doctor of Cardiac Surgery
129110, Schepkina str., 61/2, Moscow
L. S. Zolotareva
Russian Federation
Zolotareva Lyubov Svyatoslavovna – PhD, senior researcher at the Department of Pediatric Reconstructive and Plastic Surgery, Research Institute of Clinical Surgery
123001, st. Sadovaya-Kudrinskaya, 15с3, Moscow
D. I. Zybin
Russian Federation
Zybin Dmitrii Igorevich – PhD, Department head of the Cardiac Surgery
129110, Schepkina str., 61/2, Moscow
М. А. Popov
Russian Federation
Popov Mikhail Aleksandrovich – PhD, Senior Researcher, doctor at the Department of Cardiac Surgery
129110, Schepkina str., 61/2, Moscow
L. Zh. Mameshova
Russian Federation
Mameshova Lina Zhanatovna – student
119991, Lomonosovsky avenue, 27, Moscow
D. А. Rybakov
Russian Federation
Rybakov Dmitry Aleksandrovich – student
119991, Lomonosovsky avenue, 27, Moscow
V. V. Dontsov
Russian Federation
Dontsov Vladislav Viktorovich – Researcher, doctor of the Department of Cardiac Surgery
129110, Schepkina str., 61/2, Moscow
V. Р. Pronina
Russian Federation
Pronina Victoria Petrovna – Candidate of Medical Sciences. Senior Researcher at the Department of Cardiac Surgery
129110, Schepkina str., 61/2, Moscow
R. А. Maslennikov
Russian Federation
Maslennikov Ruslan Andreevich – Resident of the Department of
Cardiac Surgery
129110, Schepkina str., 61/2, Moscow
L. Yu. Marchenko
Russian Federation
Marchenko Liliya Yurievna – Researcher
123007, 76A Khoroshevskoe shosse str., Moscow
E. E. Sigaleva
Russian Federation
Sigaleva Elena Eduardovna – Doctor of Medical Sciences, Professor
123007, 76A Khoroshevskoe shosse str., Moscow
D. V. Shumakov
Russian Federation
Shumakov Dmitrii Valer’evich – MD, PhD, professor, corresponding member RAS, Head of the Department of Cardiac and Vascular Surgery
129110, Schepkina str., 61/2, Moscow
References
1. Bethesda M.D. Nhlbi Morbidity and Mortality Chartbook; National Heart, Lung and Blood Institute: Bethesda, MD, USA, 2002
2. Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Blaha M.J. et al. Heart disease and stroke statistics—2014 update: A report from the american heart association. Circulation, 2014. № 129, pp. e28–e292. https://doi.org/10.1161/01.cir.0000441139.02102.80
3. De Hert S.G. Volatile anesthetics and cardiac function. Semin. Cardiothorac. Vasc. Anesth, 2006, №10, pp. 33-42. https://doi.org/10.1177/108925320601000107
4. De Hert SG. Cardioprotection by volatile anesthetics: what about noncardiac surgery? J. Cardiothorac. Vasc. Anesth, 2011, № 25, pp. 899–901. https://doi.org/10.1053/j.jvca.2011.08.004
5. Soldatov P.E., D’iachenko A.I., Pavlov B.N., Fedotov A.P., Chuguev A.P. Survival of laboratory animals in argon-containing hypoxic gaseous environments. Aviakosm. Ekolog. Med., 1998, № 32, pp. 33–37. (In Russ.)
6. Kiss A., Shu H., Hamza O., Santer D., Tretter E.V., Yao S. et al. Argon preconditioning enhances postischaemic cardiac functional recovery following cardioplegic arrest and global cold ischaemia. Eur. J. Cardiothorac. Surg., 2018, № 54, pp. 539–546. https://doi.org/10.1093/ejcts/ezy104
7. Pagel P.S., Krolikowski J.G., Shim Y.H., Venkatapuram S., Kersten J.R., Weihrauch D. et al. Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth. Analg, 2007, № 105, pp. 562–569. https://doi.org/10.1213/01.ane.0000278083.31991.36
8. Lemoine S., Blanchart K., Souplis M., Lemaitre A., Legallois D., Coulbault L. et al. Argon exposure induces postconditioning in myocardial ischemia–reperfusion. J. Cardiovasc. Pharmacol. Ther., 2017, № 22, pp. 564–573. https://doi.org/10.1177/1074248417702891
9. Fahlenkamp A.V., Rossaint R., Haase H., Al Kassam H., Ryang Y.M., Beyer C., Coburn M. The noble gas argon modifies extracellular signalregulated kinase 1/2 signaling in neurons and glial cells. Eur. J. Pharmacol., 2012, № 674, pp. 104–111. https://doi.org/10.1016/j.ejphar.2011.10.045
10. Jawad N., Rizvi M., Gu J., Adeyi O., Tao G., Maze M., Ma D. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci. Lett., 2009, № 460, pp. 232–236. https://doi.org/10.1016/j.neulet.2009.05.069
11. Loetscher P.D., Rossaint J., Rossaint R., Weis J., Fries M., Fahlenkamp A. et al. Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit. Care., 2009, № 13, pр. R206. https:// doi.org/10.1186/cc8214
12. Brucken A., Cizen A., Fera C., Meinhardt A., Weis J., Nolte K. et al. Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth., 2013, № 110, pp. i106–i112. https://doi.org/10.1093/bja/aes509
13. Brucken A., Kurnaz P., Bleilevens C., Derwall M., Weis J., Nolte K. et al. Dose dependent neuroprotection of the noble gas argon after cardiac arrest in rats is not mediated by K(ATP)-channel opening. Resuscitation, 2014, № 85, pp. 826–832. https://doi.org/10.1016/j.resuscitation.2014.02.014
14. De Deken J., Rex S., Monbaliu D., Pirenne J., Jochmans I. The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses. Crit. Care. Med., 2016, № 44, pp. e886–96. https://doi.org/10.1097/CCM.0000000000001717
15. Hafner C., Qi H., Soto-Gonzalez L., Doerr K., Ullrich R., Tretter E.V. et al. Argon Preconditioning Protects Airway Epithelial Cells against Hydrogen Peroxide-Induced Oxidative Stress. Eur. Surg. Res., 2016, № 57, pp. 252–262. https://doi.org/10.1159/000448682
16. COESA. U.S. Standard Atmosphere 1976. Washington DC: U.S. Government Printing Office; 1976; 1–241. Report No.: NOAA-S/T76-1562.
17. Boeva E.A., Grebenchikov O.A. Organoprotective Properties of Argon (Review). General reanimatology, 2022, №18, pp. 44-59. https://doi.org/10.15360/1813-9779-2022-5-44-59 (in Russ.)
18. Ma S., Chu D., Li L., Creed J.A., Ryang Y.M., Sheng H. et al. Argon Inhalation for 24 Hours After Onset of Permanent Focal Cerebral Ischemia in Rats Provides Neuroprotection and Improves Neurologic Outcome. Crit. Care Med., 2019, № 47, pp. e693–e699. https://doi.org/10.1097/CCM.0000000000003809
19. Nespoli F., Redaelli S., Ruggeri L., Fumagalli F., Olivari D., Ristagno G. A complete review of preclinical and clinical uses of the noble gas argon: Evidence of safety and protection. Ann. Card. Anaesth., 2019, № 22, pp. 122–135. https://doi.org/10.4103/aca.ACA_111_18
20. Schneider F.I., Krieg S.M., Lindauer U., Stoffel M., Ryang Y.M. Neuroprotective Effects of the Inert Gas Argon on Experimental Traumatic Brain Injury In Vivo with the Controlled Cortical Impact Model in Mice. Biology (Basel)., 2022, № 11, рp. 158. https://doi.org/10.3390/biology11020158
21. Ulbrich F., Kaufmann K.B., Meske A. et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS One., 2016, № 11, pр. e0165182. https://doi.org/10.1371/journal.pone.0165182
22. Vdovin A.V., Nozdracheva L.V., Pavlov B.N. Parameters of energy metabolism of the rat brain during inhalation of hypoxic mixtures containing nitrogen and argon. Biull. Eksp. Biol. Med., 1998, № 125, pp. 618–619. (In Russ.)
23. Petrov V.A., Ivanov A.O., Kindzerskij A.V., Majorov I.V. Method of emergency relief of acute ischemic attacks with cerebral or coronary circulation failure. Patent № RU 2748126 C1. Date of registration: 01.06.2020. Date of publication: 19.05.2021. (In Russ.)
24. Petrov V.A., Ivanov A.O., Kochubejnik N.V., Shatov D.V. Method of auxiliary therapy in treatment and rehabilitation of patients with violations of the oxygen balance of the body. Patent № RU 2661771 C2. Date of registration: 13.12.2016. Date of publication: 19.07.2018. (In Russ.)
25. Spaggiari S., Kepp O., Rello-Varona S., Chaba K., Adjemian S., Pype J. et al. Antiapoptotic activity of argon and xenon. Cell Cycle., 2013, № 12, pp. 2636–2642. https://doi.org/10.4161/cc.25650
26. Yarin Y.M., Amarjargal N., Fuchs J., Haupt H., Mazurek B., Morozova S.V., Gross J. Argon protects hypoxia-, cisplatin- and gentamycinexposed hair cells in the newborn rat’s organ of Corti. Hear. Res., 2005, № 201, pp. 1–-9. https://doi.org/10.1016/j.heares.2004.09.015
27. Wu L., Zhao H., Wang T., Pac-Soo C., Ma D. Cellular signaling pathways and molecular mechanisms involving inhalational anestheticsinduced organoprotection. J. Anaesth., 2014, № 28, pp. 740–758. https://doi.org/10.1007/s00540-014-1805-y
28. David H.N., Haelewyn B., Degoulet M., Colomb D.G. Jr., Risso J.J., Abraini J.H. Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PLoS One, 2012, № 7, pр. e30934. https://doi.org/10.1371/journal.pone.0030934
29. Fahlenkamp A.V., Coburn M., de Prada A., Gereitzig N., Beyer C., Haase H. et al. Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med. Gas. Res., 2014, № 4, рp. 11. https://doi.org/10.1186/2045-9912-4-11
30. Irani Y., Pype J.L., Martin A.R., Chong C.F., Daniel L., Gaudart J. et al. Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra, 2011, № 1, pp. 272–282. https://doi.org/10.1159/000335197
31. Faure A., Bruzzese L., Steinberg J.G., Jammes Y., Torrents J., Berdah S.V. et al. Effectiveness of pure argon for renal transplant preservation in a preclinical pig model of heterotopic autotransplantation. J. Transl. Med., 2016, № 14, pр. 40. https://doi.org/10.1186/s12967-016-0795-y
32. Mayer B., Soppert J., Kraemer S., Schemmel S., Beckers C., Bleilevens C. et al. Argon Induces Protective Effects in Cardiomyocytes during the Second Window of Preconditioning. Int. J. Mol. Sci., 2016, № 17, рp. 1159. https://doi.org/10.3390/ijms17071159
33. Qi H., Soto-Gonzalez L., Krychtiuk K.A., Ruhittel S., Kaun C., Speidl W.S. et al. Pretreatment with argon protects human cardiac myocytelike progenitor cells from oxygen glucose deprivation-induced cell death by activation of AKT and differential regulation of mapkinases. Shock, 2018, № 49, pp. 556–563. https://doi.org/10.1097/SHK.0000000000000998
34. Qi H., Zhang J., Shang Y., Yuan S., Meng C. Argon inhibits reactive oxygen species oxidative stress via the miR-21-mediated PDCD4/PTEN pathway to prevent myocardial ischemia/reperfusion injury. Bioengineered, 2021, № 12, pp. 5529–5539. https://doi.org/10.1080/21655979.2021.19656 96
35. Savary G., Lidouren, F., Rambaud, J., Kohlhauer, M., Hauet, T., Bruneval, P. et al. Argon attenuates multiorgan failure following experimental aortic cross-clamping. Br. J. Clin. Pharmacol., 2018, № 84, pp. 1170–1179. https://doi.org/10.1111/bcp.13535
36. Rizvi M., Jawad N., Li Y., Vizcaychipi M.P., Maze M., Ma D. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. Exp. Biol. Med. (Maywood), 2010, № 235, pp. 886–891. https://doi.org/10.1258/ebm.2010.009366
37. Grüne F., Kazmaier S., Hoeks S.E., Stolker R.J., Coburn M., Weyland A. Argon does not affect cerebral circulation or metabolism in male humans. PLoS One, 2017, № 12, pр. e0171962. https://doi.org/10.1371/journal.pone.0171962
38. Markin A.A., Juravlyova O.A., Morukov B.V., Kuzichkin D.S., Zabolotskaya I.V., Vostrikova L.V. Metabolic reactions of the body when breathing hypoxic argon-oxygen and nitrogen-oxygen gas mixtures. Human Physiology, 2017, № 43, pp. 466–473. https://doi.org/10.7868/S0131164617040105 (In Russ.).
39. P.G. Shakhnovich, A.O. Ivanov, V.F. Belyaev, D.V. Cherkashin, A.S. Svistov, V.P. Andrianov, E.S. Zagarov. Possibility of correction of microcirculation indicators in hypoxia. Bulletin of the Russian Military Medical Academy, 2015, №3, pp. 28-32 (In Russ.).
40. Lysenko E.A., Shmarov V.A., Rykova M.P., Antropova E.N., Kutko O.V., Shulgina S.M. et al. The influence of respiratory hypoxic gas mixtures (oxygen-nitrogen and oxygen-nitrogen-argon) in a pressure chamber on the state of the human cellular immunity. Cell immunology, 2022, № 43, pp. 643– 653. https://doi.org/10.33029/0206-4952-2021-42-6-643-653 (In Russ.).
Review
For citations:
Agafonov E.G., Zolotareva L.S., Zybin D.I., Popov М.А., Mameshova L.Zh., Rybakov D.А., Dontsov V.V., Pronina V.Р., Maslennikov R.А., Marchenko L.Yu., Sigaleva E.E., Shumakov D.V. Argon-induced preconditioning and postconditioning in patients with myocardial ischemia. Moscow Surgical Journal. 2024;(2):101-115. (In Russ.) https://doi.org/10.17238/2072-3180-2024-2-101-115